电压知识
为什么电除尘器供电都采用直流负电晕?
一、为什么电除尘器供电都采用直流负电晕?
从电离的角度来看,直流电与交流电无本质区别。但是,工频交流电的频率为60Hz;即用交流电作电源,两电极间的极性变化为每秒60次。随着电场强度的方向不断变化,粉尘在不断变化的电场力的作用下,也是飘忽不定。最后,粉尘还未到达集尘极,就被气流带离电场。因此,用交流电作电源的电除尘器,其集尘效率很低。
直流电源的极性稳定,粉尘一旦带上某种电荷,就会跑向相反的电极。因此,工业用的电除尘器都采甩直流电源。
电除尘器的电晕电极之所以采用负极性,是因为它同正电晕相比,有以下优点。
(1)放电性能稳定
(2)产生的火花放电电压较高
放电电压越高,电场强度和电晕电流密度也就越大,相应的,电除尘器的收尘效率也就越高。试验证明,在相同条件下,负电晕放电一般比正电晕放电的电压要高,火花塞电压也较大。火花放电是指高压电场使空气瞬间电离,产生巨大电流并释放大量的热,使空气发声发光,产生电火花的现象。
(3)产生的电晕电流较大
由于上述等原因,工业用的电除尘器几乎都采用负电晕。只有在空气净化的场合,消除臭氧一般采用正电晕。
二、负电压芯片
负电压芯片的应用和优势
负电压芯片是一种应用广泛的电子元件,它具有许多重要的应用和优势。无论是在工业领域还是消费电子产品中,负电压芯片都发挥着重要作用。本文将介绍负电压芯片的应用领域和其独特的优势。
什么是负电压芯片?
负电压芯片是一种能够产生负电压输出的电子元件。它通过将输入电源电压反向,生成一个负电压输出信号。负电压芯片通常由几个主要部分组成,包括输入电源、控制电路、变换电路和输出电路。通过这些组件的协调工作,负电压芯片可以有效地产生负电压输出。
负电压芯片的应用领域
负电压芯片在许多不同的领域有着广泛的应用。以下是一些主要的应用领域:
- 1. DC-DC转换器:负电压芯片常用于DC-DC转换器中,将正向电压转换为负向电压输出。这在一些特定的电子系统中非常有用,如医疗设备和电信设备。
- 2. LCD背光:在液晶显示器(LCD)背光中,负电压芯片用于驱动负向电压,以提供高质量的显示效果。它能够产生稳定的负电压输出,确保LCD显示器的性能。
- 3. 光学设备:在一些光学设备中,如光电探测器和光纤通信系统,负电压芯片被用来提供所需的负电压信号。这有助于保持系统的稳定性和性能。
- 4. 信号处理系统:负电压芯片在一些信号处理系统中也得到广泛应用。通过产生负电压输出,它可以帮助提供清晰、稳定的信号处理。
- 5. 高压应用:一些特定的应用需要高压输出,而负电压芯片可以提供所需的负向高压输出。
负电压芯片的优势
除了应用广泛之外,负电压芯片还具有一些独特的优势,使其在电子领域中备受青睐。
1. 反向电压生成
负电压芯片能够将输入电源的电压反向,产生所需的负电压输出。这对于许多特定的应用场景非常重要,特别是在需要负电压的电子系统中。
2. 稳定性和可靠性
负电压芯片能够提供稳定、可靠的负电压输出。这对于一些对电压稳定性要求较高的应用至关重要,如医疗设备和工业自动化系统。
3. 小型化和集成化
现代负电压芯片通常采用微型封装和集成电路技术,使其体积更小、功耗更低。这使得负电压芯片更适合于小型化电子设备和移动设备。
4. 高效能耗比
负电压芯片能够在输出负电压的同时,保持较高的能效比。这对于需要较低能耗的电子设备和绿色能源应用非常重要,有助于减少能源消耗。
总结
负电压芯片作为一种重要的电子元件,在各个领域中都发挥着重要作用。它广泛应用于DC-DC转换器、LCD背光、光学设备、信号处理系统和高压应用等领域,并具有反向电压生成、稳定性和可靠性、小型化和集成化以及高效能耗比等独特优势。随着电子技术的不断发展和应用场景的不断扩大,负电压芯片将继续发挥其重要作用,推动电子领域的创新与发展。
三、电晕现象是怎样的?电晕有何危害?
电晕,指带电体表面在气体或液体介质中发生局部放电的现象,常发生在高压导线的周围和带电体的尖端附近,能产生臭氧、氧化氮等物质。
在110kV以上的变电所和线路上,时常出现与日晕相似的光层,发出“嗤嗤”“陛哩”的声音。电晕能消耗电能,并干扰无线电波。电晕是极不均匀电场中所特有的电子崩——流注形式的稳定放电。
危害:
1、由于电晕放电伴随着电离、复合、激励、反激励等过程产生的声光热效应,发出“丝丝”的噪声,对人的生理,心理的影响。220kV以下问题不严重,500kV及以上影响较大,其次使周围气体温度升高,减少元件热稳定性。
2、在尖端突出处,电子与离子在局部强场作用下高速运动,形成“电风”。当电极固定得刚性不够,会使电晕极震动转动,减少元件动稳定性。
3、气体放电会发生化学反应,主要产生臭氧、二氧化氮、一氧化氮。其中,臭氧对金属及有机绝缘物有强烈氧化作用,二氧化氮、一氧化氮会溶于空气中的水形成硝酸类,具有强腐蚀性。
4、产生高频脉冲电流,其中含有大量的高次谐波,干扰无线电通讯。
5、会产生可观的能量损耗。
四、负电源芯片
什么是负电源芯片?
负电源芯片是一种小型电子组件,用于将输入的正电压转换为对应的负电压输出。它是当今电子设备中不可或缺的一部分,在各种应用领域中发挥着重要的作用。负电源芯片通常由多个电子元件组成,包括电容器、二极管、稳压器等。
负电源芯片的工作原理
负电源芯片的工作原理可以归纳为以下几个步骤:
- 输入电压传递:负电源芯片接收来自外部电源的正电压输入。
- 电压反转:负电源芯片内部的电路将输入电压进行反转,将正电压转变为对应的负电压。
- 输出检测:负电源芯片会检测输出的负电压是否符合设定的电压要求。
- 稳定输出:如果输出的负电压不稳定,负电源芯片会进行稳压操作,确保输出电压的稳定性。
通过以上步骤,负电源芯片能够将正电压转换为对应的负电压输出,满足各种电子设备对负电压的需求。
负电源芯片的应用
负电源芯片广泛应用于各种电子设备中,例如:
- 通信设备:负电源芯片在手机、无线网络设备等通信设备中发挥着关键的作用。它可以为这些设备提供所需的负电压,确保它们正常运行。
- 汽车电子系统:负电源芯片在汽车电子系统中也非常常见。它可以为汽车中的各种电子设备提供负电压,例如音响系统、导航系统等。
- 医疗设备:医疗设备需要高度稳定和可靠的电源,负电源芯片能够提供这种需求。它在医疗设备中的应用范围广泛,例如心脏起搏器、血压监测仪等。
- 工业自动化:工业自动化领域对电源的可靠性和稳定性要求很高,负电源芯片能够满足这些要求。它在PLC、工控系统等工业设备中得到广泛应用。
负电源芯片在这些领域的应用为电子设备的正常运行和性能提升做出了重要贡献。
负电源芯片的优势
负电源芯片相比传统电源转换方案具有以下优势:
- 小巧高效:负电源芯片通常体积小巧,重量轻,适合于电子设备的集成。它能够高效地将输入电压转换为负电压,减少能源浪费。
- 稳定可靠:负电源芯片通过稳压技术确保输出电压的稳定性,避免电压波动对设备造成损害。同时,它的高可靠性也能够保证设备长时间稳定运行。
- 节能环保:负电源芯片能够高效转换电能,减少能源的消耗,符合现代社会对节能环保的要求。
- 多种保护功能:负电源芯片通常具备过流保护、过温保护、短路保护等功能,可有效保护设备和使用者安全。
负电源芯片的这些优势使得它成为许多电子设备的首选,有助于提升设备的性能和可靠性。
总结
负电源芯片是电子设备中不可或缺的组成部分,能够将输入的正电压转换为对应的负电压输出。它在通信设备、汽车电子系统、医疗设备、工业自动化等领域得到广泛应用。负电源芯片具有小巧高效、稳定可靠、节能环保、多种保护功能等优势。随着电子设备的不断发展和进步,负电源芯片将继续扮演重要的角色,推动电子技术的发展。
五、负电阻元件:什么是负电阻元件及其应用
负电阻元件(Negative Resistance Device)是一种特殊的电子元件,其电流-电压特性与通常的电子元件相反。正常情况下,电子元件的电压和电流呈正相关关系,即电压越高,电流越大。然而,负电阻元件的电流-电压特性则是负相关关系,即电压越高,电流越小。
负电阻元件的工作原理
负电阻元件的工作原理基于电路中的负阻抗。负阻抗是指电阻受到外加电压或电流的影响而导致电阻值降低的现象。在负电阻元件中,当外加电压或电流达到一定阈值时,其内部电路会发生自激振荡或反馈效应,从而导致电阻值变为负值。
负电阻元件的应用
负电阻元件在电子领域中有着广泛的应用。
1. 负电阻放大器
负电阻放大器是利用负电阻元件的特性来放大电信号的设备。通过负电阻放大器,可以增强电路的灵敏度和稳定性,提高信号的传输距离和质量。
2. 负电阻振荡器
负电阻振荡器是利用负电阻元件的自激振荡特性来产生稳定的振荡信号的设备。负电阻振荡器广泛应用于射频电路、通信系统、雷达、无线电和电子钟等领域。
3. 电子学系统模拟器
负电阻元件可以用于电子学系统的模拟器中,用于模拟和调试电路的工作状态。通过负电阻元件,可以更好地理解电路的特性和行为。
4. 电压控制负电阻元件
电压控制负电阻元件是一种可以通过外部电压控制的负电阻元件。通过改变外部电压的大小和极性,可以实现对电流-电压特性的调节和控制。
结语
负电阻元件是一种与传统电子元件相反的特殊元件,其电流-电压特性呈负相关关系。负电阻元件的应用包括负电阻放大器、负电阻振荡器、电子学系统模拟器和电压控制负电阻元件等。通过了解和应用负电阻元件,可以拓展电子领域中的技术和应用。
感谢您阅读本文,希望通过对负电阻元件的介绍,您对负电阻元件的工作原理和应用有了更深入的了解。
六、电晕面和非电晕面区别?
区别主要在于产生电晕的原因不同。
1.电晕面是指在某些情况下,材料表面会形成电晕的现象。这通常是由于材料表面存在异种电荷或者表面缺陷,导致电荷在表面积累并形成电场。当电场强度达到一定程度时,就会产生电晕现象。
2.非电晕面则是指在正常情况下,材料表面不会形成电晕的现象。这通常是由于材料本身的表面特性和环境条件较为稳定,没有足够的电荷或者电场异常,因此不会产生电晕现象。
此外,电晕面和非电晕面在具体的应用中也有所不同。在电子工业中,电晕面常常被用于制造高压电路的导电涂层,以提高电路的导电性能。而在建筑材料和电气设备中,非电晕面则更为常见,因为这些材料需要具有较高的耐电压和耐腐蚀性能。
综上所述,电晕面和非电晕面的区别主要在于产生电晕的原因和应用领域不同。
七、什么大于电晕临界电压产生电晕?
线路实际运行电压高于电晕临界电压值时,表面场强也超过了临界场强,将发生电晕。
电力系统容易产生电晕的地方大体有三处:第一是在变电所母线两端的耐张线夹处,其电晕主要是因为母线尾端剪切不平滑并带有毛刺,以及耐张线夹与绝缘子连接的穿钉上的开口销比较尖锐,易产生电晕。第二是在线路的耐张杆塔处,因为耐张杆塔跳线的两端剪切不平滑,易产生电晕,耐张线夹与绝缘子碗头穿钉上的开口销也易产生电晕。第三是在直线杆塔上,主要是因为悬垂线夹与挂板连接的穿钉上的开口销尾端比较尖锐,也易产生电晕。
电晕是一种放电现象,雨天在输电线周围可能会听到“兹兹”的声音,那就是电晕的声音,夜里也能看到导线在发微弱的光,当然电晕也不是只有坏处,以后可以细说。
由电晕的“兹兹”声,也会带来无线电干扰,这也是为什么直流导线也要分裂的原因,都是为了降低电晕。
八、薄膜电晕和非电晕的区别?
区别是表面粗糙度不同。经由电压在PET膜表面打出微细的凹陷,藉由这些肉眼看不出的小凹陷来增加油墨的附著力,主要目的为易於印刷。
电晕通俗讲就是在材料表面放电,表面形成细小孔状(达到一定粗糙度,就是大家说的电晕。电晕后的产品表面易于后端作业。(涂胶、涂防静电液)
九、电晕辊用途?
电晕辊电晕胶辊,薄膜的电晕处理通常由电晕机与电晕辊共同完成,在塑料薄膜包装行业及双拉薄膜(BOPP、BOPET、BOPI)行业中,电晕辊主要采用橡胶辊来处理,因薄膜宽幅较大,因此辊体也比较大,以布鲁克纳的BOPP双拉线为例,牵引电晕压辊通常尺寸在直径450*8700mm,牵引608*8700mm,橡胶层大多采用硅胶。
十、单电晕面和双电晕面有什么不同?
一面放电,两面放电产生电晕。单面电晕只有一面涂了特殊物质,双面电晕可能是两面都涂了一种物质。
电晕(放电)是指由于高电压使周围空气产生电离,当电压梯度超过一定临界值时,在导体表面和它的附近出现紫蓝色辉光的放电现象。
气体介质在不均匀电场中的局部自持放电。最常见的一种气体放电形式。在曲率半径很大的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段。
电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流。电晕电流这一现象是G.W.特里切尔于1938年发现的,称为特里切尔脉冲。若电压继续升高,电晕电流的脉冲频率增加、幅值增大,转变为负辉光放电。电压再升高,出现负流注放电,因其形状又称羽状放电或称刷状放电。当负流注放电得以继续发展到对面电极时,即导致火花放电,使整个间隙击穿。正极性电晕在尖端电极附近也分布着正离子,但不断被推斥向间隙空间,而电子则被吸进电极,同样形成重复脉冲式电晕电流。电压继续升高时,出现流注放电,并可导致间隙击穿。
热点信息
-
一、万用表怎么测试电流hz? 可以用万用表的频率档,测试电路端的电压频率。则可知电流的频率。 二、万用表怎么测试短路电流? 1,档位要与被测电流...
-
你好 正常光照强度下100KW光伏并网发电量是每天400--800度,与火力发电不能按理论比较,按瞬时功率计算约为70KWH,理论和实际是有一定差距的,光伏并网发...
-
按楼主的思路: 1、二只120Ω的电阻并联后等效电阻=120*120/(120+120)=14400/240=60(Ω) 2、二只60Ω的电阻并联后等效电阻=60*60/(60+60)=3600/120=30(Ω) 3、其实...
-
电源的电动势形成了电压,继而产生了电场力,在电场力的作用下,处于电场内的电荷发生定向移动,形成了电流。 在外电路中,电流从电源电势高的正极...